
MATH 30530 — Introduction to Probability April 21th

Quiz 3 bis

This exercise is a follow up on Quiz 3, and will be graded as described in my email dated 4/24,
2:00PM EST. The work is to be handed back before April 27th 11:59PM on Sakai, preferably in
.pdf format. You may email me questions at any time.

Collaboration is prohibited, between students as well as with other parties. The following re-
sources are authorised: personal notes, the course videos, the documents available on the course
website (including the course textbook and the solution to Quiz 3), Wikipedia in English. Unless
otherwise specified, other resources are prohibited. Basic calculators, and the use of the computer
for similar operations, are allowed; anything more sophisticated is forbidden.1

As usual, the Notre Dame Code of Honor is in effect for this work.

Exercise 1
Let X and Y by continuous random variables with the joint probability density function

p(x, y) =
{

1
C ·
(

ln(x) + 1
y4

)
for x, y ∈ [1, e]× [1, 2],

0 otherwise,

for some constant C > 0.

1. What is the value of C?

2. What is the variance of X?

3. What is the covariance of X and Y ? Are X and Y independent?

1Computing
√

2 + ln(17− e) is fine; plotting f(x) = x2 − 3 isn’t.
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Exercise 2
We consider a button wired to a numeric display through a random device. Initially, the counter
indicates one. Each time the button is pressed, the counter is incremented doubled with probability
2/3, and halved with probability 1/3. For instance, the first time the button is pressed, the counter
was one so it becomes 2 with probability 2/3 or 1/2 with probability 1/3.

We write Xn for what the counter shows after the button is pressed n times (so Xn is a random
variable and X0 = 0). We denote their probability mass function by pn. Note that Xn is always a
power of two: Xn = 2k, for k possibly negative.

1. What is p2?

2. Suppose pn is known. Express the probability mass function of (Xn, Xn+1) using pn but not
pn+1.

3. Let Y be a random variable with values of the form 2k for k relative integers. Show that for
any function f , ∑

k∈Z
f(2k)pY (2k−1) = E[f(2Y )].

4. Show that
E [ln(Xn+1)] = E [ln(Xn)] + 1

3 ln(2).

For instance, you can see Xn+1 as a function of (Xn, Xn+1)

5. Use induction to show that
E [ln(Xn)] = n

3 ln(2).

1Computing
√

2 + ln(17− e) is fine; plotting f(x) = x2 − 3 isn’t.
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Exercise 3
Let X and Y be two variables which admit a joint probability density function p given by

p(x, y) =


1/4 if (x, y) ∈ (−1, 0)× (0, 2),
1− x if (x, y) ∈ (0, 1)× (0, 1),
0 else.

0-1 1

1

2

1/4

1− x

x

y

1Computing
√

2 + ln(17− e) is fine; plotting f(x) = x2 − 3 isn’t.

1



We imagine that X and Y are the price in a few months’ time of some raw product. An
investment company wants to choose between two strategies A and B, which have been designed
to give a respective (random) profit XY and 2Y − 1.

1. What are the probability density functions of the marginals X and Y ?

2. What are the expectations of XY and 2Y − 1? Which strategy is better in average?

3. Let Ω ⊂ R2 be the subset of all (x, y) such that the strategy A is better than the strategy B
when X = x, Y = y. Keeping in mind that plotters are not allowed, draw Ω roughly on a
graph. Indicate the values of p on the same graph.

4. What is the probability that the strategy A is better than the strategy B?
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Exercise 4
Let X be a variable with distribution Gamma(2, 1). Recall that by definition, its density is

pX(x) =
{

1
C · x

2−1e−x for x > 0,

0 else

for some constant C. You may use C directly in your answers, without giving its value.2
Define

f(x) = −
(

x + 1
x

)
and Y = f(X).

1. Find the critical points of f and its limit at +∞ and 0. Draw roughly the graph of f over
R+.

2. Find all points x ≥ 0 such that f(x) ≤ −4.

3. What is the density of Y ?

1Computing
√

2 + ln(17− e) is fine; plotting f(x) = x2 − 3 isn’t.
2If you really want to know, you can deduce the value of C from Appendix A for the textbook. It is a simple

constant.
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