Quiz 3
 Solution

1. What is the density of the distribution $\mathcal{G a m m a}(\nu, \lambda)$?

$$
p_{X}(x)= \begin{cases}\frac{\lambda^{\nu}}{\Gamma(\nu)} x^{\nu-1} \mathrm{e}^{-\lambda x} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

2. Let X be a continuous random variable with density

$$
p_{X}(x)=\frac{\sin (x)^{2}}{\pi x^{2}}
$$

and set $Y=\exp (X)$. What is the density of Y ?
Since $Y>0$, we have $p_{Y}(y)=0$ for all $y \leq 0$. For any $y>0$, we have

$$
F_{Y}(y)=\mathbb{P}(Y \leq y)=\mathbb{P}(\exp (X) \leq y)=\mathbb{P}(X \leq \ln (y))=F_{X}(\ln (y))
$$

Taking the derivative, we get

$$
p_{Y}(y)=F_{Y}^{\prime}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{X}(\ln (y))=F_{X}^{\prime}(\ln (y)) \cdot \frac{1}{y}=p_{X}(\ln (y)) \cdot \frac{1}{y}=\frac{\sin (\ln (y))^{2}}{y \cdot \pi \ln (y)^{2}}
$$

All in all,

$$
p_{Y}(y)= \begin{cases}\frac{\sin (\ln (y))^{2}}{y \cdot \pi \ln (y)^{2}} & \text { if } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

3. Sketch the cumulative ditribution function of X, for X a continuous variable with distribution \mathcal{U} nif $(-1,3)$.
The graph of the cumulative distribution function of a uniform variable is simple: zero before the lower bound, one after the upper bound, and a linear straight line joining the two. In our case, we get this graph.

If you which to get back to the formula for the density, we know that X can only take values between -1 and 3 , so $F_{X}(x)=0$ for $x \leq-1$ and $F_{X}(x)=1$ for $x \geq 3$. For $-1<x<3$,

$$
\mathbb{P}(X \leq x)=\int_{-\infty}^{x} p_{X}(t) \mathrm{d} t=\int_{-1}^{x} \frac{1}{3-(-1)} \mathrm{d} t=\left.\frac{t}{4}\right|_{-1} ^{x}=\frac{x+1}{4}
$$

This is indeed a straight line, with values 0 at -1 and 1 at 3 .
4. Let X be a continuous random variable with density

$$
p_{X}(x)= \begin{cases}\cos (2 x) & \text { if }-\pi / 4<x<\pi / 4 \\ 0 & \text { else }\end{cases}
$$

What is the expectation of X ?
The traditional method goes as follows (note the integration by parts).

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{-\infty}^{+\infty} x \cdot p_{X}(x) \mathrm{d} x \\
& =\int_{-\pi / 4}^{\pi / 4} x \cdot \cos (2 x) \mathrm{d} x \\
& =\left.\left(x \cdot \frac{\sin (2 x)}{2}\right)\right|_{-\pi / 4} ^{\pi / 4}-\int_{-\pi / 4}^{\pi / 4} \frac{\sin (2 x)}{2} \mathrm{~d} x \\
& =\left(\frac{\pi}{4} \cdot \frac{1}{2}-\frac{-\pi}{4} \cdot \frac{-1}{2}\right)-\left.\left(\frac{-\cos (2 x)}{4}\right)\right|_{-\pi / 4} ^{\pi / 4} \\
& =0-(-0+0)=0
\end{aligned}
$$

However, in this case, the density is even and we could have predicted the result. Indeed, setting $u=-x$,

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x \cdot p_{X}(x) \mathrm{d} x=\int_{+\infty}^{-\infty}(-u) \cdot p_{X}(-u)(-\mathrm{d} u)=-\int_{-\infty}^{\infty} u \cdot p_{X}(u) \mathrm{d} u=-\mathbb{E}[X]
$$

The only number equal to its opposite is zero, so $\mathbb{E}[X]=0$.

