Homework 1 Solution

February 19th

Exercises from the book

Exercise 1.1. Set $a=\mathbb{P}$ (Heads), $b=\mathbb{P}$ (Tails), $c=\mathbb{P}$ (Edge). Then

$$
a+b+c=1, \quad c=0.1, \quad a=2 b
$$

We deduce

$$
0.9=a+b=3 b \Rightarrow b=0.3, \quad a=0.6
$$

Exercise 1.5. Set A the event "rain on Saturday", and B the event "rain on Sunday". Then we are given the probabilities of, in order, $A, B, A \cap B$ and $A \cup B$.
(i) According to the inclusion-exclusion principle, we should have

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)=0.7+0.6-0.4=0.9
$$

This does not correspond to the given probability, so the given numbers are inaccurate.
(ii) These numbers correspond to the probability space $S=\{R R, R S, S R, S S\}$ ($R \leftrightarrow$ rainy, $S \leftrightarrow$ sunny) with the probability function satisfying

$$
\mathbb{P}(R R)=0.4, \quad \mathbb{P}(R S)=0.3, \quad \mathbb{P}(S R)=0.2, \quad \mathbb{P}(S S)=0.1
$$

The sum of these probabilities is one, so it is a valid probability space.
(iii) We have $A \cap B \subset A$, so we must have

$$
0.8=\mathbb{P}(A \cap B) \leq \mathbb{P}(A)=0.7
$$

This is obviously not the case, hence the given probabilities are inconsistent. The same argument also works for $A \cap B \subset B, A \subset A \cup B, B \subset A \cup B$, and most notably $A \cap B \subset A \cup B$.
(iv) Using the inclusion-exclusion principle again, we must have

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)=0.7+0.6-0.5=0.8
$$

This is again not satisfied, and these numbers do not correspond to any probability space.

Exercise 1.18 We have

$$
\mathbb{P}(A \mid A \cup B)=\frac{\mathbb{P}(A \cap(A \cup B))}{\mathbb{P}(A \cup B)}=\frac{\mathbb{P}(A)}{\mathbb{P}(A)+\mathbb{P}(B)}
$$

We used $A \cap(A \cup B)=A$; this type of set equality is proved by showing that an elements x belongs to the left hand side if and only if it belongs to the right hand side. In this case, it is not difficult.

Exercise 1.19 Because $B \cap C$ is not empty, C cannot be empty either. We have

$$
\mathbb{P}(A \cap B \cap C)=\mathbb{P}(A \cap(B \cap C))=\mathbb{P}(A \mid B \cap C) \mathbb{P}(B \cap C)
$$

and

$$
\mathbb{P}(B \cap C)=\mathbb{P}(B \mid C) \mathbb{P}(C)
$$

and the first result follows directly.
As for the second identity,

$$
\mathbb{P}(A \mid B \cap C)=\frac{\mathbb{P}(A \cap(B \cap C))}{\mathbb{P}(B \cap C)}=\frac{\mathbb{P}((A \cap B) \cap C)}{\mathbb{P}(B \cap C)}=\frac{\mathbb{P}(A \cap B \mid C) \mathbb{P}(C)}{\mathbb{P}(B \mid C) \mathbb{P}(C)}=\frac{\mathbb{P}(A \cap B \mid C)}{\mathbb{P}(B \mid C)}
$$

Exercise 1.20 Because A, B and C are independent, we have

$$
\mathbb{P}(A \cap(B \cap C))=\mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)=\mathbb{P}(A) \mathbb{P}(B \cap C)
$$

which is the definition of A and $B \cap C$ being independent.
Regarding A and $B \cup C$, note that

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

indeed,

$$
\begin{aligned}
x \in A \cap(B \cup C) & \Leftrightarrow x \text { belongs to } A, \text { and also to either } B \text { or } C \\
& \Leftrightarrow x \text { belongs to either } A \text { and } B, \text { or } A \text { and } C \\
& \Leftrightarrow x \in(A \cap B) \cup(A \cap C) .
\end{aligned}
$$

(You may just write the equality without justification.)
Then, using the inclusion/exclusion principle, we get

$$
\begin{aligned}
\mathbb{P}(A \cap(B \cup C)) & =\mathbb{P}((A \cap B) \cup(A \cap C))=\mathbb{P}(A \cap B)+\mathbb{P}(A \cap C)-\mathbb{P}(A \cap B \cap C) \\
& =\mathbb{P}(A) \mathbb{P}(B)+\mathbb{P}(A) \mathbb{P}(C)-\mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)=\mathbb{P}(A)(\mathbb{P}(B)+\mathbb{P}(C)-\mathbb{P}(B) \mathbb{P}(C)) \\
& =\mathbb{P}(A)(\mathbb{P}(B)+\mathbb{P}(C)-\mathbb{P}(B \cap C))=\mathbb{P}(A) \mathbb{P}(B \cup C),
\end{aligned}
$$

as expected.

Exercise 1.22 For $i=1,2$ denote by E_{i} the event "the politician wins the i-th election". We know that

$$
\mathbb{P}\left(E_{1}\right)=0.6, \quad \mathbb{P}\left(E_{2}\right)=0.5, \quad \mathbb{P}\left(E_{2} \mid E_{1}\right)=0.75
$$

$$
\begin{equation*}
\mathbb{P}\left(E_{1} \cap E_{2}\right)=\mathbb{P}\left(E_{2} \mid E_{1}\right) \mathbb{P}\left(E_{1}\right)=0.75 \cdot 0.6=0.45 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{P}\left(E_{1} \cap E_{2}^{c}\right)=\mathbb{P}\left(E_{2}^{c} \mid E_{1}\right) \mathbb{P}\left(E_{1}\right)=0.25 \cdot 0.6=0.15 \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{P}\left(E_{1} \mid E_{2}\right)=\frac{\mathbb{P}\left(E_{1} \cap E_{2}\right)}{\mathbb{P}\left(E_{2}\right)}=\frac{0.45}{0.5}=0.9 \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{P}\left(E_{2} \mid E_{1}^{c}\right)=\frac{\mathbb{P}\left(E_{1}^{c} \mid E_{2}\right) \mathbb{P}\left(E_{2}\right)}{\mathbb{P}\left(E_{1}^{c}\right)}=\frac{\left(1-\mathbb{P}\left(E_{1} \mid E_{2}\right)\right) \mathbb{P}\left(E_{2}\right)}{\mathbb{P}\left(E_{1}^{c}\right)}=\frac{0.1 \cdot 0.5}{0.4}=0.125 \tag{iv}
\end{equation*}
$$

Exercise 1

1, 2. A first possibility for S could be all the possible values for $N:\{2,3,4 \ldots\}=\mathbb{N} \backslash\{0,1\}$, where N is just the outcome. In this case, $A=\{2,3\}$.

A second could be all the finite sequences of heads and tails with exactly two heads, and finishing with a heads:

$$
S=\{(H, H),(H, T, H),(T, H, H),(H, T, T, H),(T, H, T, H),(T, T, H, H), \ldots\} .
$$

In this case, N is the length of the outcome, and $A=\{(H, H),(H, T, H),(T, H, H)\}$. The exercise did not ask for it, but the probability of a given outcome is $1 / 2^{L}=2^{-L}$, where L is the length of the sequence.

A third one might be the set of couples (k, ℓ), where k is the number of tails we have to go through before the first heads, and ℓ the number of tails between the first and the second heads. In this case, N is given by $k+1+\ell+1=k+\ell+2$. It means that $S=\mathbb{N}^{2}$, and the outcomes corresponding to the ones in the previous example are

$$
S=\{(0,0),(0,1),(1,0),(0,2),(1,1),(2,0), \ldots\}
$$

The probability of (k, ℓ) is $2^{-k-\ell-2}$, and the set A is $\{(0,0),(1,0),(0,1)\}$ in this case.
I did cheat a bit in this third example: it is the second one in disguise, since there is a correspondence between their elements. An actual different example is the set of unordered pairs $\{k, \ell\}$, including $\{k, k\}$. Then $\{1,3\}$ for instance may correspond to either (T, H, T, T, T, H) or (T, T, T, H, T, H), but it does not change N : is is still $k+\ell+2$, independently of course of the ordering. The probability of $\{k, \ell\}$ is 2^{-k-l-2} if $k=\ell$, otherwise it is $2^{-k-\ell-1}$. In this instance, $A=\{\{0,0\},\{0,1\}\}$.

A fifth and very natural possibility is the set of all sequences of heads and tails: $S=\{H, T\}^{\mathbb{N}}$. In this sample space, we have added useless tosses after the second heads, but of course we can recover N by finding the position of that second heads. The set A is the set of all sequences such that the first three elements are either $(H, H, T),(H, H, H),(H, T, H)$ or (T, H, H). In this sample
set, the probability of the event B consisting of all sequences $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ such that elements x_{0}, \ldots, x_{k} (for instance, in our case we might want to consider $k=3$) have fixed values y_{0}, \ldots, y_{k} (in our case, maybe $y_{1}=y_{2}=H, y_{3}=T$) is $\mathbb{P}(B)=2^{-k}$.

Many more sample spaces are available, although it is likely that those given above are the most convenient.
3. We have

$$
C=\{N \geq 5\}=\{N<4\}^{\complement}=(\{N \leq 3\} \cup\{N=4\})^{\complement}=(A \cup B)^{\complement}
$$

4. I will use the second probability space above.

$$
\begin{aligned}
\mathbb{P}(A) & =\mathbb{P}(\{(H, H),(H, T, H),(T, H, H)\}) \\
& =\mathbb{P}((H, H))+\mathbb{P}((H, T, H))+\mathbb{P}((T, H, H)) \\
& =\frac{1}{4}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2} \\
\mathbb{P}(B) & =\mathbb{P}(\{(H, T, T, H),(T, H, T, H),(T, T, H, H)\}) \\
& =\mathbb{P}((H, T, T, H))+\mathbb{P}((T, H, T, H))+\mathbb{P}((T, T, H, H)) \\
& =\frac{1}{16}+\frac{1}{16}+\frac{1}{16}=\frac{3}{16}
\end{aligned}
$$

According to question 3, and noting that A and B are disjoint,

$$
\mathbb{P}(C)=1-\mathbb{P}(A \cup B)=1-(\mathbb{P}(A)+\mathbb{P}(B))=1-\left(\frac{1}{2}+\frac{3}{16}\right)=\frac{5}{16}
$$

Some of you may have used a variant of the fifth sample space above, and noted a sequence is in C if and only if its first 4 elements are either $(T, T, T, T),(H, T, T, T),(T, H, T, T),(T, T, H, T)$ or (T, T, T, H), which gives the same result.

Exercise 2

We set P (resp. D, C) the probability that the randomly chosen household owns a pet (resp. a dog, a cat). Then the event we are interested in is $E=P \backslash(D \cup C)$.

Because $(D \cup C)$ is included in P, we have $P=(P \backslash(D \cup C)) \cup(D \cup C)$, and obviously the sets involved in this union are disjoint; hence

$$
\mathbb{P}(P)=\mathbb{P}(E)+\mathbb{P}(D \cup C)
$$

Using the inclusion-exclusion principle, we have

$$
\mathbb{P}(D \cup C)=\mathbb{P}(D)+\mathbb{P}(C)-\mathbb{P}(D \cap C)
$$

and finally

$$
\begin{aligned}
\mathbb{P}(E) & =\mathbb{P}(P)-\mathbb{P}(D \cup C)=\mathbb{P}(P)-(\mathbb{P}(D)+\mathbb{P}(C)-\mathbb{P}(D \cap C)) \\
& =0.57-0.38-0.25+0.19=0.13
\end{aligned}
$$

Exercise 3

The easiest way to prove that $\mathbb{P}(E) \leq \mathbb{P}(F)$ is to show that $E \subset F$. This exercise uses this trick over and over.

1. Of course $\mathbb{P}\left(B_{0}\right) \leq \mathbb{P}\left(A_{0}\right)$. Now by definition, B_{n+1} is A_{n+1} but with some elements taken away; it means that B_{n+1} is included in A_{n+1}, and $\mathbb{P}\left(B_{n+1}\right) \leq \mathbb{P}\left(A_{n+1}\right)$. Of course it implies the second half immediately.
2. If $x \in A_{n}$, then in particular $x \in A_{k}$ for some $k(k=n)$. Choose k to be the smallest possible. If $k=0$, then $x \in A_{0}=B_{0}$ and obviously $x \in \bigcup_{k=0}^{n} B_{k}$.

Suppose now that $k>0$. Then $x \notin A_{0}, x \notin A_{1}, \ldots, x \notin A_{k-1}, x \in A_{k}$. In other words, x is not in any $A_{i}, i<k$, hence not in $\bigcup_{i=0}^{k-1} A_{i}$. Since x however belongs to A_{k}, x must belong to B_{k} by definition of B_{k}, and $x \in \bigcup_{k=0}^{n} B_{k}$ using the fact that $k \leq n$.

To show the second part, take x in A. We will show that $x \in \bigcup_{n=0}^{\infty} B_{n}$, hence $A \subset \bigcup_{n=0}^{\infty} B_{n}$ and the conclusion will follow.

Since x is in A, it is in $\bigcup_{n=0}^{\infty} A_{n}$. In particular, it must belong to some fixed A_{m}. But according to the first part of the question, we see that it is in fact in $\bigcup_{k=0}^{m} B_{k}$, hence in $\bigcup_{n=0}^{\infty} B_{n}$. This is indeed what we expected.
3. Let n and m be two different integers. We want to show that B_{n} and B_{m} are disjoint, i.e. that no elements belongs to the two of them.

Suppose first that $n<m$. We have seen in question 1 that B_{n} is included in A_{n}. But by definition, B_{m} is A_{m} where we have taken away all the elements from the previous A_{k}, including A_{n}. It means that every element of B_{n} has been removed to get B_{m}, so that their intersection is indeed empty.

If $m<n$, then it is just the same argument the other way around.
4. Using, in order, question 2,3 and 1 , we get

$$
\mathbb{P}(A) \leq \mathbb{P}\left(\bigcup_{n=0}^{\infty} B_{n}\right)=\sum_{n=0}^{\infty} \mathbb{P}\left(B_{n}\right) \leq \sum_{n=0}^{\infty} \mathbb{P}\left(A_{n}\right)
$$

