Homework 10 Solution

April 30th

Exercises from the book

Exercise 2.32 Since the density function $f(x)$ is odd we see that $\mathbb{E}[X]=0$.

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{\infty} x^{2} e^{-x} d x
$$

since $x^{2} f(x)$ is even. Integrating by parts twice gives $\operatorname{Var}(X)=2$. Alternatively, we can also notice that this last integral is the second moment of an exponential distribution of parameter 1 ; for $Y \sim \mathcal{E} x p(1)$,

$$
\operatorname{Var}(X)=\int_{0}^{\infty} x^{2} e^{-x} d x=\mathbb{E}\left[Y^{2}\right]=\operatorname{Var}(Y)+\mathbb{E}[Y]^{2}=1+1^{2}=2
$$

Exercise 2.34 Denote by X the random location where you break the stick, and by $L=L(X)$ the length of the longest of the two resulting segments. Then

$$
L(X)= \begin{cases}1-X, & X \leq \frac{1}{2} \\ X, & X>\frac{1}{2}\end{cases}
$$

We have

$$
\mathbb{E}[L]=\int_{0}^{\frac{1}{2}}(1-x) d x+\int_{\frac{1}{2}}^{1} x d x=-\left.\frac{(1-x)^{2}}{2}\right|_{0} ^{1 / 2}+\left.\frac{x^{2}}{2}\right|_{1 / 2} ^{1}=\frac{3}{4}
$$

Exercise 2.36 Suppose that the lifetime T of a light bulb is exponentially distributed, so $T \sim$ $\mathcal{E} x p(\lambda)$. The probability that that a bult will last more that a year is $\mathbb{P}(T>1)=e^{-\lambda}$ so we must have

$$
0.8 \approx e^{-\lambda}
$$

The probability that a light bulb will last more than two years must be $e^{-2 \lambda}$ so we must have

$$
0.3 \approx e^{-2 \lambda}=\left(e^{-\lambda}\right)^{2} \approx(0.8)^{2}
$$

This is clearly not the case so the lifetime is not exponentially distributed.

Exercise 2.37 The easy way is to not try and compute the cumulative distribution function of X nor Y. Since X cannot be negative, Y cannot either, so $p_{Y}(y)=0$ for $y \leq 0$. We have

$$
F_{Y}(y)=\mathbb{P}(\lambda X \leq y)=\mathbb{P}(X \leq y / \lambda)=F_{X}(y / \lambda)
$$

Taking derivatives for $y>0$, we see that

$$
p_{Y}(y)=F_{Y}^{\prime}(y)=\frac{\mathrm{d}}{\mathrm{~d} y}\left(F_{X}(y / \lambda)\right)=p_{X}\left(\frac{y}{\lambda}\right) \cdot \frac{1}{\lambda}=\mathrm{e}^{-y}
$$

Thus, $Y=\lambda X$ has the same cumulative distribution function as $\mathcal{E} x p(1)$.
If we wanted to follow the approach of the exercise, we would find $F_{X}(x)=0$ for $x \leq 0$, and for $x>0$

$$
F_{X}(x)=\int_{-\infty}^{x} p_{X}(u) \mathrm{d} u=\int_{0}^{x} \lambda \mathrm{e}^{-\lambda u} \mathrm{~d} u=1-\mathrm{e}^{-\lambda x}
$$

Because of the above, this would mean $F_{Y}(y)=F_{X}(y / \lambda)=1-\exp (-y)$, the derivative of which being what we expected indeed.

Exercise 2.45 Let $Y=X^{2}$. Set $F_{Y}(y):=\mathbb{P}(Y \leq y)$. Because $0 \leq Y \leq 1$, we know that $p_{Y}(y)=0$ for $y \notin(0,1)$. For $0<y<1$, we have

$$
F_{Y}(y)=\mathbb{P}\left(X^{2} \leq y\right)=\mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y})=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})
$$

for F_{X} the cumulative distribution function of X. The probability density function of Y is $F_{Y}^{\prime}(y)$, so

$$
\begin{aligned}
F_{Y}^{\prime}(y) & =\frac{1}{2 \sqrt{y}}\left(F_{X}^{\prime}(\sqrt{y})+F_{X}^{\prime}(-\sqrt{y})\right) \\
& =\frac{1}{2 \sqrt{y}}\left(\frac{1}{1-(-1)}+\frac{1}{1-(-1)}\right) \\
& =\frac{1}{2 \sqrt{y}} .
\end{aligned}
$$

In particular, Y is in fact a beta distribution with parameters $\left(\frac{1}{2}, 1\right)$.
If we wanted to follow the approach of the exercise, we would find $F_{X}(x)=0$ for $x \leq-1$, $F_{X}(x)=1$ for $x \geq 1$, and for $0<x<1$ we have

$$
F_{X}(x)=\int_{-\infty}^{x} p_{X}(u) \mathrm{d} u=\int_{-1}^{x} \frac{1}{2} \mathrm{~d} u=\frac{x+1}{2}
$$

Because of the above, this would mean $F_{Y}(y)=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})=\sqrt{y}$, the derivative of which being what we expected indeed.

Exercise 1

Write Y for the highest bid of the other contestants, so $Y \sim \mathcal{U} n i f([70,130])$.

1. If the bid x is at most 70 , the probability is zero, and it is one if x is at least 130 .

If $70<x<130$, the probability of winning is

$$
\mathbb{P}(\text { winning })=\mathbb{P}(Y<x)=\int_{-\infty}^{x} p_{Y}(y) \mathrm{d} y=\int_{70}^{x} \frac{1}{130-70} \mathrm{~d} y=\frac{x-70}{60}
$$

All in all, we get

$$
\mathbb{P}(\text { winning })= \begin{cases}0 & \text { for } x \leq 70 \\ \frac{x-70}{60} & \text { for } 70<x<130 \\ 1 & \text { for } x \geq 130\end{cases}
$$

2. Write X for the gain. For x fixed, X can take at most two values: 0 or $100-x$. The expectation is then

$$
\mathbb{E}[X]=0 \cdot \mathbb{P}(\text { losing })+(100-x) \cdot \mathbb{P}(\text { winning })= \begin{cases}0 & \text { for } x \leq 70 \\ \frac{(x-70)(100-x)}{60} & \text { for } 70<x<130 \\ 100-x & \text { for } x \geq 130\end{cases}
$$

3. For $x \geq 130$, the gain is negative. We have to study $(x-70)(100-x)$. For instance, we can see that

$$
(x-70)(100-x)=225-(x-85)^{2}
$$

so that $(x-70)(100-x)$ is at most 225 , and it the maximum is reached at $x=85$. Since $100-225 / 60=385 / 4$ is positive, it is the maximal possible expectation, and the most profitable bid in average is 85 .

Exercise 2

1. A function p is the probability density function of a continuous variable if and only if p is nonnegative and its integral is equal to one. So we need a and b to be nonnegative, and

$$
1=\int_{-\infty}^{+\infty} p_{X}(x) \mathrm{d} x=\int_{-1}^{1} a \mathrm{~d} x+\int_{0}^{1} b \mathrm{~d} x=a+b
$$

2. Let us compute the first two moments of X.

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{-1}^{0} a x \mathrm{~d} x+\int_{0}^{1} b x \mathrm{~d} x=\left.\frac{a x^{2}}{2}\right|_{-1} ^{0}+\left.\frac{b x^{2}}{2}\right|_{0} ^{1}=\frac{b-a}{2} \\
\mathbb{E}\left[X^{2}\right] & =\int_{-1}^{0} a x^{2} \mathrm{~d} x+\int_{0}^{1} b x^{2} \mathrm{~d} x=\left.\frac{a x^{3}}{3}\right|_{-1} ^{0}+\left.\frac{b x^{3}}{3}\right|_{0} ^{1}=\frac{a+b}{3}
\end{aligned}
$$

Hence, the variance of X is

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{4(a+b)-3(b-a)^{2}}{12}
$$

Remember that $a+b=1$, so the variance is minimal when $|b-a|$ is maximal, which means that (a, b) equals either $(0,1)$ or $(1,0)$.

Exercise 3 See Exercise 2.37 and Exercise 2.45 above.

