# Homework 5 Solution 

March 19th

## Exercises from the book

Exercise 2.1 The range of $X$ is $\{1,3\}$ ( $x$ coordinates of the jumps), with

$$
\mathbb{P}(X=1)=\frac{1}{3}, \quad \mathbb{P}(X=3)=\frac{2}{3}
$$

(heights of the jumps). Everything follows easily from this:

$$
F(2)=\frac{1}{3}, \quad \mathbb{P}(X>1)=\frac{2}{3}, \quad \mathbb{P}(X=2)=0, \quad \mathbb{P}(X=3)=\frac{2}{3}
$$

Exercise 2.2 There are 36 possible outcomes when we roll a pair of dice. Six of them are doubles $(1,1), \ldots,(6,6)$, while the other thirty involve pairs of distinct numbers.
(a) We have

$$
\begin{array}{ll}
\mathbb{P}(X=1)=\frac{1+2 \cdot 5}{36}=\frac{11}{36}, & \mathbb{P}(X=2)=\frac{1+2 \cdot 4}{36}=\frac{9}{36} \\
\mathbb{P}(X=3)=\frac{1+2 \cdot 3}{36}=\frac{7}{36}, & \mathbb{P}(X=4)=\frac{1+2 \cdot 2}{36}=\frac{5}{36} \\
\mathbb{P}(X=5)=\frac{1+2 \cdot 1}{36}=\frac{1}{12}, & \mathbb{P}(X=6)=\frac{1}{36}
\end{array}
$$

(b) We have

$$
\begin{array}{lll}
\mathbb{P}(X=5)=\frac{2}{36}=\frac{1}{18}, & \mathbb{P}(X=4)=\frac{2 \cdot 2}{36}=\frac{1}{9}, & \mathbb{P}(X=3)=\frac{2 \cdot 3}{36}=\frac{1}{6} \\
\mathbb{P}(X=2)=\frac{2 \cdot 4}{36}=\frac{2}{9}, & \mathbb{P}(X=1)=\frac{2 \cdot 5}{36}=\frac{5}{18}, & \mathbb{P}(X=0)=\frac{6}{36}=\frac{1}{6}
\end{array}
$$

Exercise 2.3 (a) We must have

$$
1=\sum_{k=0}^{\infty} \frac{c}{2^{k}}=c \sum_{k=0}^{\infty} \frac{1}{2^{k}}=2 c \Rightarrow c=\frac{1}{2}
$$

(b) We have

$$
\mathbb{P}(X>0)=1-\mathbb{P}(X=0)=\frac{1}{2}
$$

(c) The probability that $X$ is even is

$$
\begin{gathered}
\mathbb{P}(X=0)+\mathbb{P}(X=2)+\mathbb{P}(X=4)+\cdots \\
=\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2^{2}}+\frac{1}{2} \cdot \frac{1}{2^{4}}+\cdots=\frac{1}{2}\left(1+\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\cdots\right) \\
=\frac{1}{2}\left(1+\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}}+\cdots\right)=\frac{1}{2} \cdot \frac{1}{1-\frac{1}{4}}=\frac{1}{2} \cdot \frac{4}{3}=\frac{2}{3}
\end{gathered}
$$

Exercise 2.4 (a) The range of $X$ is $\{0,1,2,3,4,5\}$, and

$$
\mathbb{P}(X=k)=\binom{5}{k}\left(\frac{48}{52}\right)^{5-k}\left(\frac{4}{52}\right)^{k}
$$

Later, we will call this distribution the binomial $\mathcal{B}$ in $(5,4 / 52)$.
(b) The range of $X$ is $\{0,1,2,3,4\}$ and

$$
\begin{gathered}
\mathbb{P}(X=0)=\frac{\binom{48}{5}}{\binom{52}{5}}, \quad \mathbb{P}(X=1)=\frac{\binom{4}{1} \cdot\binom{48}{4}}{\binom{52}{5}}, \quad \mathbb{P}(X=2)=\frac{\binom{4}{2} \cdot\binom{48}{3}}{\binom{52}{5}} \\
\mathbb{P}(X=3)=\frac{\binom{4}{3} \cdot\binom{48}{2}}{\binom{52}{5}}, \quad \mathbb{P}(X=4)=\frac{\binom{4}{4} \cdot\binom{48}{1}}{\binom{52}{5}} .
\end{gathered}
$$

Later, we will call this distribution the hypergeometric $\mathcal{H G e o m}(4,48,5)$.
Exercise 2.5 The range of $X$ is $\{-2,0,2\}$. We have

$$
\mathbb{P}(X=2)=\mathbb{P}(X=-2)=\frac{1}{4}, \quad \mathbb{P}(X=0)=\frac{1}{2}, \quad \mathbb{P}(X=x)=0 \text { otherwise. }
$$

It means that the cumulative distribution function has 3 jumps at $-2,0$ and 2 , with sizes $1 / 4,1 / 2$ and $1 / 4$ :


