Homework 8 Solution

April 16th

Exercise 1

1. We are doing an experiment continuously and independently as time goes on, and counting the number of successes. This is a Poisson experiment.
2. Let N be the number of shooting stars we see during the (say one hour) watch. According to the previous question, it has distribution $\mathcal{P o i}(\lambda)$. The probability to not see any shooting stars is

$$
\mathbb{P}(N=0)=\frac{\mathrm{e}^{-\lambda} \lambda^{0}}{0!}=\mathrm{e}^{-\lambda}
$$

According to the exercise, this probability is 0.6%, so $\lambda=-\ln (0.006) \approx 5.1$.
Now the expected number of shooting stars you will see is

$$
\mathbb{E}[N]=\lambda \approx 5.1
$$

Exercise 2

Suppose the covariance is zero. This means exactly that

$$
0=\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Since X, Y and $X Y$ can only take the value 0 or 1 , we know that

$$
\mathbb{E}[X]=0 \cdot \mathbb{P}(X=0)+1 \cdot \mathbb{P}(X=1)=\mathbb{P}(X=1)
$$

and this holds for Y and $X Y$ as well. In particular,

$$
0=\operatorname{Cov}(X, Y)=\mathbb{P}(X Y=1)-\mathbb{P}(X=1) \cdot \mathbb{P}(Y=1)
$$

But $X Y=1$ if and only if X and Y are both 1. This means

$$
\mathbb{P}(X=1 \text { and } Y=1)=\mathbb{P}(X=1) \cdot \mathbb{P}(Y=1)
$$

At this point, we have the result suggested by the hint. Now we need to replace $Y=1$ by $Y=0$.
The idea is that we want to express $\mathbb{P}(X=1$ and $Y=0)$ using $\mathbb{P}(X=1$ and $Y=1)$, then it flows fairly naturally.

$$
\begin{aligned}
\mathbb{P}(X=1 \text { and } Y=0) & =\mathbb{P}(X=1)-\mathbb{P}(X=1 \text { and } Y=1)=\mathbb{P}(X=1)-\mathbb{P}(X=1) \cdot \mathbb{P}(Y=1) \\
& =\mathbb{P}(X=1) \cdot(1-\mathbb{P}(Y=1))=\mathbb{P}(X=1) \cdot \mathbb{P}(Y=0)
\end{aligned}
$$

Exercise 3

1. The probabilities all sum to one, so there is no constraint there. Since we need every probability to be non-negative, this means $0 \leq p \leq 1 / 2$ and $0 \leq q \leq 1$.
2. The variance of X is $\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$.

$$
\begin{gathered}
\mathbb{E}[X]=-2 \cdot p+(-1) \cdot(1 / 2-p)+1 \cdot(1 / 2-p)+2 \cdot p=0 \\
\mathbb{E}\left[X^{2}\right]=(-2)^{2} \cdot p+(-1)^{2} \cdot(1 / 2-p)+1^{2} \cdot(1 / 2-p)+2^{2} \cdot p=8 p+(1-2 p)=1+6 p \\
\operatorname{Var}(X)=(1+6 p)-0^{2}=1+6 p
\end{gathered}
$$

The variance is minimal for p minimal, i.e. $p=0$.
3. Similarly,

$$
\begin{gathered}
\mathbb{E}[Y]=(-1) \cdot q+1 \cdot(1-q)=1-2 q \\
\mathbb{E}\left[Y^{2}\right]=(-1)^{2} \cdot q+1^{2} \cdot(1-q)=1 \\
\operatorname{Var}(Y)=1-(1-2 q)^{2}
\end{gathered}
$$

This is a quadratic term in "completed square" form; its maximum is 1 , attained for $1-2 q=0$, i.e. $q=1 / 2$. Since this is a possible value for q, it is the maximal possible variance.

Just for fun, there is another way to find the variance. Since Y takes only two values, we can tweak it a bit to make it Bernoulli: $Z=(Y+1) / 2$ takes the value 1 with probability $1-q$, and 0 with probability q. Hence

$$
\operatorname{Var}(Y)=\operatorname{Var}(2 Z-1)=\operatorname{Var}(2 Z)=2^{2} \operatorname{Var}(Z)=4 \cdot(1-q)(1-(1-q))=4 q(1-q)
$$

One can check that it is the same result as the one we found before.

Exercise 4

Let N be a random variable of distribution $\mathcal{G e o m}(1 / 3)$.
1.

$$
\mathbb{P}(N \geq 20) \leq \frac{\mathbb{E}[N]}{20}=\frac{3}{20}=15 \%
$$

2. We know that $\mathbb{E}[N]=5$ and $\operatorname{Var}(N)=6$. If $N \geq 20$, then $|N-5| \geq 15$, so

$$
\mathbb{P}(N \geq 20) \leq \mathbb{P}(|N-5| \geq 15)=\mathbb{P}(|N-5| \geq \sqrt{75 / 2} \cdot \sqrt{6}) \leq \frac{1}{75 / 2} \approx 2.7 \%
$$

3.

$$
\begin{aligned}
\mathbb{E}\left[\alpha^{N}\right] & =\sum_{k=1}^{\infty} \alpha^{k} \cdot \mathbb{P}(N=k)=\sum_{k=1}^{\infty} \alpha^{k}(1-1 / 3)^{k-1}(1 / 3)=\frac{1}{3} \cdot \alpha \sum_{k=0}^{\infty} \underbrace{\alpha^{k}\left(\frac{2}{3}\right)^{k}}_{=\left(\frac{2 \alpha}{3}\right)^{k}} \\
& =\frac{\alpha}{3} \cdot \frac{1}{1-2 \alpha / 3}=\frac{\alpha}{3-2 \alpha}
\end{aligned}
$$

4. Using Markov's inequality, we get

$$
\mathbb{P}(N \geq 20)=\mathbb{P}\left(\alpha^{N} \geq \alpha^{20}\right) \leq \frac{\mathbb{E}\left[\alpha^{N}\right]}{\alpha^{20}}=\frac{\alpha^{-19}}{3-2 \alpha}
$$

This is true for any α between 0 and $3 / 2$, so we can use $\alpha=1.425$ and get $\mathbb{P}(N \geq 20) \leq 0.8 \%$. The example $\alpha=1.425$ was chosen becase it corresponds to the smallest value of $\alpha^{-19} /(3-2 \alpha)$.
5. N is a geometric random variable, so it corresponds to the first success in a series of independent experiments. The fact that $N \geq 20$ corresponds to the first 19 experiments being failures, which has probability $(2 / 3)^{19} \approx 0.054 \%$ because the experiments are independent.

Exercise 5

The annual cost for repairs on a car, in dollars, is a random variable X with expectation 2000 and variance 500,000 .

1. Call X the cost for repairs, so that $\mathbb{E}[X]=2,000$ and $\operatorname{Var}(X)=500,000$.

$$
\mathbb{P}(X \geq 3000) \leq \mathbb{P}(|N-2000| \geq 1000) \leq \frac{1}{(1000 / \sqrt{\operatorname{Var}(X)})^{2}}=\frac{500,000}{1,000,000}=50 \%
$$

2. Call X_{i} the cost for the i th person, so the total cost is $X=X_{1}+\cdots+X_{100}$. Because the expectation is linear, we have $\mathbb{E}[X]=100 \cdot 2,000$, and because the variables are independent, we have $\operatorname{Var}(X)=100 \cdot 500,000$ (otherwise we would have to deal with covariances). Now the total budget is 250,000 and
$\mathbb{P}(X \geq 250,000) \leq \mathbb{P}(|N-200,000| \geq 50,000) \leq \frac{1}{(50,000 / \sqrt{\operatorname{Var}(X)})^{2}}=\frac{50,000,000}{2,500,000,000}=2 \%$.
3. Strategy 2 seems the safest, even though the individual cost is lower. Of course this is why insurance companies exist, and why it is always easier to be rich.
