Homework 9 Solution

April 23rd

Exercise 2.31

(i) Since f is a probability density function, its integral must be one. In other words,

$$
1=\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{-1}^{1} \frac{c}{\sqrt{1-x^{2}}} \mathrm{~d} x=c(\arcsin (1)-\arcsin (-1))=c \pi
$$

From this we deduce
(ii) Since for $-1 \leq t \leq 1$, we have

$$
\int_{-1}^{t} \frac{c}{\sqrt{1-x^{2}}} d x=\frac{1}{\pi} \arcsin (t)+\frac{1}{2}
$$

the distribution function is given by

$$
F(t)= \begin{cases}\frac{1}{\pi} \arcsin (t)+\frac{1}{2} & -1<t<1 \\ 0 & t \leq-1 \\ 1 & t \geq 1\end{cases}
$$

Exercise 1

We have $(2 x-1)^{2} \geq 1 / 4$ if and only if $|2 x-1| \geq 1 / 2$, which is the same as $|x-1 / 2| \geq 1 / 4$. This happens for $x \leq 1 / 4$ or $x \geq 3 / 4$.

Using the definition of continuous random variables, we have

$$
\begin{aligned}
\mathbb{P}\left((2 x-1)^{2} \geq 1 / 4\right) & =\mathbb{P}(X \leq 1 / 4 \text { or } X \geq 3 / 4) \\
& =\mathbb{P}(X \leq 1 / 4)+\mathbb{P}(X \geq 3 / 4) \\
& =\int_{-\infty}^{1 / 4} p_{X}(x) \mathrm{d} x+\int_{3 / 4}^{\infty} p_{X}(x) \mathrm{d} x
\end{aligned}
$$

This would be true for any continuous random variable X. In our case, X is uniform over $[0,1]$, so we know that the density is one for $x \in[0,1]$, and zero everywhere else. So we can disregard the part where the density is zero, and we get

$$
\mathbb{P}\left((2 x-1)^{2} \geq 1 / 4\right)=\int_{0}^{1 / 4} 1 \mathrm{~d} x+\int_{3 / 4}^{1} 1 \mathrm{~d} x=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

Exercise 2

1. By definition,

$$
F_{X}(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} p_{X}(u) \mathrm{d} u=C \int_{-\infty}^{x} \frac{\mathrm{~d} u}{1+u^{2}}=C \cdot\left(\arctan (x)+\frac{\pi}{2}\right)
$$

2. We know X but not Y, so we try to rephrase everything as properties of X :

$$
F_{Y}(y)=\mathbb{P}(Y \leq y)=\mathbb{P}(X \leq y / 2)=C \cdot\left(\arctan \left(\frac{y}{2}\right)+\frac{\pi}{2}\right)
$$

3. Since

$$
F_{Y}(y)=\int_{-\infty}^{y} p_{Y}(t) \mathrm{d} t
$$

we can use the second fundamental theorem of calculus to deduce

$$
p_{Y}(y)=F_{Y}^{\prime}(Y)=C \cdot \frac{\mathrm{~d}}{\mathrm{~d} y}\left(\arctan \left(\frac{y}{2}\right)+\frac{\pi}{2}\right)=\frac{C}{2+y^{2} / 2} .
$$

