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A first example

A typical realization of the
Gaussian free field A Brownian bridge
(from Wikipedia, Samuel S. Watson)
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A first example

Standard Gaussian free field: (almost) a random function ¢
defined on a domain of the plane.

Roughly, all ¢(x) as well as the increments ¢(x + dx) — ¢(x) are
I.I.d Gaussian, conditioned to pasting globally to a function.

It is Gaussian, so it is determined by the covariance function

E[p(x)o(y)]-
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A first example

A measure &, on Brownian-like paths from x to y:

» run a Brownian motion W : [0, 7) — M starting from x,
killed with some rate and at the boundary;

» choose atime U € [0, 7] with respect to Lebesgue;
» disintegrate according to Wy; specialize at y.
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A first example

A measure &, on Brownian-like paths from x to y:

» run a Brownian motion W : [0, 7) — M starting from x,
killed with some rate and at the boundary;

» choose atime U € [0, 7] with respect to Lebesgue;
» disintegrate according to Wy; specialize at y.

Theorem.
For every x,y € M, we have (weakly)

E[¢(x)p(y)] = Exyl1]:
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Classical field theory

We work over spacetime.
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> afield ¢,
l.e. a collection of ¢(x) for every x € M, where they all live
In a different vector space Ejy;
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Classical field theory

We work over spacetime.

Two fundamental objects:

> afield ¢,
l.e. a collection of ¢(x) for every x € M, where they all live
In a different vector space Ejy;

» aconnectionV,
which gives a way to compare ¢(x) and ¢(y) given a path.

From ~ € path(x,y) smooth, we get HolV (v) : Ex — E;.
It sends concatenation to composition (functorial).

P. Perruchaud



Classical field theory

» The field ¢ represents matter (particles!), for instance
electrons.

» The connection V represents forces (interactions!), for
Instance the electromagnetic potential.

|| large «» large probability to detect particles
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Classical field theory

» Field ¢ = matter (electrons)
» Connection V = forces (electromagnetic potential)

>4
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A constructive quantum field theory

Our model: we want to construct a measure

1

~exp (= 2 V013 = Mgl + ul¢l3) Do (d).

» Some reference measure that we take for granted
(Yang-Mills).
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1
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A constructive quantum field theory

Our model: we want to construct a measure

1

~exp (= 2 V013 — Mgl + ul¢]3) DP™(d).

» Some reference measure that we take for granted
(Yang-Mills).

» An interaction term. It gives a V-dependent H' norm.
» A potential, in the famous sombrero shape.

Crucially, it is not a conditioning; under this distribution, V
does not follow PV
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A constructive quantum field theory

Our model:
1

Zexp (= 2 Vol3 — (Nl — 110]2)) DeP™M(dV).

Reformulation:

ZGFF
e (- (Al - nllol2))
ZéFF eXp ( ~ —Hvﬁsz)qu P™M(dV)

™~ J/

—PSF (do)
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A constructive quantum field theory

Our model:
1

Zexp (= [[VolZ = (0l — ] 0]2)) DgP™M(dV).

Reformulation:

7GFF
= exp (- (Ml - ull9l3)
ZéFF eXp ( - —Hvﬁsz)qu P™M(dV)

\ . 4

—PSF (do)

> We interpret P°/F as the Gaussian free field.
> We must have Z = EM[ZZF].
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A constructive quantum field theory

Context:

» A Riemannian manifold (M, g), compact with boundary; a
mass functionm: M — R,.

» A complex vector bundle E, with a Hilbert metric.
» Asection ¢ : M — E and a metric connection V on E (TBA).

Main goal: to understand with loops (i.e. compute
expectations under) the variables

Z%FF
EYM [ZGFF]
Y

/ |p(x)|“dx, / [p(x)[2dx and

under the distribution PZ* (d¢)P™(dV).

P. Perruchaud



Twisted Gaussian free field

The Gaussian free field ¢ twisted by V of mass m is the
Gaussian field with Cameron-Martin bracket

Q¢ €) = /M ((VC,VE) + (¢, me)).

» There is some tension between the values, pushing ¢ to
be continuous.

» In dimension 1, it is a Brownian bridge (m = 0, V = &).

» In dimension 2, it just fails to be a function: itis a
measure. In general, it is almost H'~9/2,

» |t is conformally invariant in dimension 2, hence fractal.
> |t is well understood.
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Twisted Gaussian free field

First apparition of the loops: the 2k-point functions.

We want to compute the correlation of the values of ¢ at
different points. At x, we can look at the coordinate of ¢(x) in

the direction of v € E4. Let us write it (v, ¢).
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Twisted Gaussian free field

First apparition of the loops: the 2k-point functions.

We want to compute the correlation of the values of ¢ at
different points. At x, we can look at the coordinate of ¢(x) in

the direction of v € E4. Let us write it (v, ¢).

Theorem.
For all v; € Ex,, we have (weakly)

E[<V17 G)(V2, ) - - - (Vap—1, ) (Var, ¢>]
R
= " T mm (Vi HOlY (£)V))].

0€By =1

Exy 1S @ measure over Brownian-like paths from x to y
(see introduction).
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Determinants of Laplacians

We discuss ZZ*. For a Gaussian measure of the form

1

> eXp ( - %(U*QU))dU,

we have

7 — \/(zﬂ)dimension/ det Q.
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1
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we have
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Determinants of Laplacians

We discuss ZZ*. For a Gaussian measure of the form

1

> eXp ( - %(U*Qu))du,

we have

7 — \/(zﬁ)dimension/ det Q.

In our case, we should consider

Z6FF — \/(27r)00 / det(1V*V + m).

We are interested in the dependence on V:

ZIF (det(2VEVo +m)\ "3
det(%VTV1 + m) .
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Determinants of Laplacians

The kth eigenvalue of the Laplacian is kR2/9+°(1) d = dim M.
The product of the eigenvalues is very ill-defined.

A theory of determinants of operators: (-regularization.

Cv(2) == > A2

AEspectrum (%V*V—I—m)

converges for &z > d/2, and extends meromorphically to C.
We set

det(3V*V + m) := exp ( — (v (0)).
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Determinants of Laplacians

There exists a measure A on loops in M such that the following
holds.
Theorem (P. Sauzedde).

Suppose
» M has dimension 2 or 3;

» either the mass does not identically vanish, or we have a
boundary.

Then the determinant rewrites as
det (2V*V +m)™" = det(Ay)” ™. EEP [ 1] tr’HolV(z)] ,
veL

where L is a Poisson process of loops of intensity A
(Brownian loop soup).
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Determinants of Laplacians

The Brownian loop soup: Poisson process of loops with
Intensity

M

where &y Is the measure on paths from x to y of the
introduction, and |¢| is the duration of the path /.
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Determinants of Laplacians

The Brownian loop soup: Poisson process of loops with
Intensity

(L € df) = / Exx[|11ear] dx,

M

where &y Is the measure on paths from x to y of the
Introduction, and |¢| is the duration of the path /.

» |t is conformally invariant, hence very fractal in nature.
» We always have infinitely many small loops.

» We have infinitely large loops, unless there is some killing
process (boundary, mass).
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The key observation

Key observation: they are both directly linked to the heat
kernels K and p:

o

ESF [(v)d(w)] = / v, Ke(x, y)w)dt,

o)

Exy(l € d) = / Be(x, y)Eexy [¢ € de] dt
0]

for K the kernel of %V*V + m, p the base, massless,
boundaryless heat kernel and E the massive, boundary-killed
Brownian bridge.
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The key observation

Key observation: they are both directly linked to the heat
kernels K and p:

o

EFo()om)] = | (v. K yw)dt.

o)

£y (£ € db) = / Be(x, y)Eexy £ € df]dt
0]

for K the kernel of %V*V + m, p the base, massless,

boundaryless heat kernel and E the massive, boundary-killed
Brownian bridge.

It turns out that

Ke(x,y) = Pe(X, Y)Erxy [tr HolY (¢) ]
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Some more work

» The term ¢? Is related to the integral of the mass along
loops.

» The term ¢* should be related to the total
self-intersection of the loop soup.

» The interaction between the terms is less obvious than it
looks...

» Can we say anything in dimension 4?
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Some more work

» The term ¢? Is related to the integral of the mass along
loops.

» The term ¢* should be related to the total
self-intersection of the loop soup.

» The interaction between the terms is less obvious than it
looks...

» Can we say anything in dimension 4?

Thank you for your attention
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From the heat equation to the determinant

_ @ / / pt(x,x)Et,X,X[trHolV(W)]

=@ / 07 tr Hol¥ (£)A(d¢)
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Multiplicative Campbell

BL —IA |/\‘k
E S[H(1+h)(e)] — o IZW

el R>0

. (%)@)k(@ + h)(41) - (1 + h)(¢g))

— e M exp(A(1 + h))
= exp (A(h))




