Differential topology for dynamical random fields

Pierre Perruchaud Université du Luxembourg

Joint work with M. Stecconi

September 2024, L² Workshop in Probability and Statistics, Nancy

Main object: random smooth functions f_t that vary with respect to some time parameter t. Main question: how does the zero set \mathcal{Z}_t evolve?

Example: $x \mapsto f_t(x) \in \mathbb{R}$ smooth on the sphere for t fixed, all the $t \mapsto f_t(x)$ jointly Brownian.

For t > 0 fixed, what can we say about the zero set \mathcal{Z}_t ?

Half-theorem.

In most situations Z_t is a collection of disjoint smooth loops.

In other words,

 $\forall t > 0, \mathbb{P}(\mathcal{Z}_t \text{ is a submanifold}) = 1.$

For t > 0 fixed, what can we say about the zero set \mathcal{Z}_t ?

Half-theorem.

In most situations \mathcal{Z}_t is a collection of disjoint smooth loops.

In other words,

 $\forall t > 0, \mathbb{P}(\mathcal{Z}_t \text{ is a submanifold}) = 1.$

When t > 0 varies, is it the same? By Fubini,

 $\mathbb{P}(\{t > 0 : \mathcal{Z}_t \text{ is a submanifold}\} \text{ has zero measure}) = 1.$

But do we actually have exceptional times?

Under reasonable hypotheses, we *must* have exceptional times where the topology changes.

From $f_s > 0$ to $f_t < 0$, we must create a point in \mathcal{Z}_t somewhere

At (some of) those times, Z_t will not be a submanifold.

P. Perruchaud

Introduction 5/29

We say that f_t is *nice* if it does not have a critical zero: there is no point x with f(x) = 0 and $df_x = 0$.

If f_t is nice, then \mathcal{Z}_t is a collection of disjoint smooth loops.

We say that f_t is *nice* if it does not have a critical zero: there is no point x with f(x) = 0 and $df_x = 0$.

If f_t is nice, then Z_t is a collection of disjoint smooth loops. Moreover, f_s is nice for $s \approx t$ and we can deform Z_t into Z_s .

By the above reasoning, there must exist exceptional times t > 0 where f_t is not nice.

Question.

What can we say about \mathcal{Z}_s for $s \approx t$ when f_t is not nice? Can we say anything about the set of exceptional times?

Let *M* be a closed manifold, $E \rightarrow M$ a vector bundle, *F* a Banach space of smooth sections, $t \mapsto f_t$ a Brownian motion of full support with values in *F*.

Example: Brownian functions $\mathbb{S}^2 \to \mathbb{R}$ written as

$$t, (x, y, z) \mapsto \sum_{n \ge 0} c_n \sum_{k_x + k_y + k_z = n} W_t^{(k)} x^{k_x} y^{k_y} z^{k_z}$$

for $W^{(k)}$ independent standard Brownian motions and $(c_n)_{n\geq 0}$ decreasing fast enough.

Let *M* be a closed manifold, $E \rightarrow M$ a vector bundle, *F* a Banach space of smooth sections, $t \mapsto f_t$ a Brownian motion of full support with values in *F*.

Example: Brownian functions $\mathbb{S}^2 \to \mathbb{R}$ written as

$$t, (x, y, z) \mapsto \sum_{n \ge 0} c_n \sum_{k_x + k_y + k_z = n} W_t^{(k)} x^{k_x} y^{k_y} z^{k_z}$$

for $W^{(k)}$ independent standard Brownian motions and $(c_n)_{n\geq 0}$ decreasing fast enough.

Under reasonable hypotheses,

- I. we can describe Z_s around the exceptional times t,
- II. we can describe the set

 $\{t > 0 : t \text{ is exceptional}\} \subset (0, \infty).$

Which singularities *can* we get? Which singularities *do* we get?

P. Perruchaud

Introduction 10/29

Which type of singularities can we have?

P. Perruchaud

Introduction 11/29

UNIVERSITÉ DU

LUXEMBOURG

We denote by $\Delta \subset F$ the set of non-nice sections (zero is not regular). It is the central object of our study, we call it the *discriminant set*. It looks a bit like this:

The discriminant set inside the infinite-dimensional space of functions F

The singularities on the hypersurface look a bit like cones, and this is indeed what they are. **Definition.**

A Morse function on *M* is a function with a single critical zero, given locally by

$$(x_1, \ldots, x_d) \mapsto (x_1, \ldots, x_r, \pm |x_{r+1}|^2 \pm |x_{r+2}|^2 \pm \cdots \pm |x_d|^2).$$

Theorem (P.-Stecconi). _

Suppose that the vectors

 $(f_1(x), d(f_1)_x, \text{Hess}(f_1)_x)$ and $(f_1(x), d(f_1)_x, f_1(y), d(f_1)_y)$ (H)

are non-degenerate for all $x, y \in M$. Then

$$\Delta = \Delta_{\mathsf{Morse}} \cup \Delta_{\mathsf{residual}},$$

where

 \blacktriangleright Δ_{Morse} is the surface of all Morse functions;

 \blacktriangleright Δ_{residual} is a complicated object of codimension 2.

Theorem (P.-Stecconi).

Suppose that the vectors

 $(f_1(x), d(f_1)_x, \text{Hess}(f_1)_x)$ and $(f_1(x), d(f_1)_x, f_1(y), d(f_1)_y)$ (H)

are non-degenerate for all $x, y \in M$. Then

$$\Delta = \Delta_{\mathsf{Morse}} \cup \Delta_{\mathsf{residual}},$$

where

- \blacktriangleright Δ_{Morse} is the surface of all Morse functions;
- \blacktriangleright Δ_{residual} is a complicated object of codimension 2.

Remark. Δ_{residual} cannot be completely peeled in strata of decreasing regularity; for instance, the order of tangency of two curves can increase to infinity, but also *be* infinite.

How does $t \mapsto f_t$ interact with Δ ?

P. Perruchaud

Introduction 16/29

What seems reasonable for $t \mapsto \mathcal{Z}_t$ from the picture:

- \[
 \Lapha_{\text{residual}} \text{ is never touched by Brownian motion, i.e. the singularities are at most Morse;
 \]
- ► Brownian motion *does* touch Δ_{Morse} sometimes, and it oscillates between the two sides of the hypersurface.
 - This corresponds to \mathcal{Z}_t oscillating between the two resolutions of the singularity.

What seems reasonable for $t \mapsto \mathcal{Z}_t$ from the picture:

- \[
 \Lapha_{\text{residual}} \text{ is never touched by Brownian motion, i.e. the singularities are at most Morse;
 \]
- ► Brownian motion *does* touch Δ_{Morse} sometimes, and it oscillates between the two sides of the hypersurface.
 - This corresponds to \mathcal{Z}_t oscillating between the two resolutions of the singularity.

Theorem (P.-Stecconi). ____

This is all true.

We avoid bad singularities

Theorem.

In finite dimension, Brownian motion avoids objects of codimension c > 2.

Proof. If W_t is in X, then $W_{k/N}$ is about $O(N^{-1/2})$ away from it.

$$\mathbb{P}(W_{|[0,1]} \text{ touches } X) \leq \mathbb{P}(\exists k, d(W_{k/N}, X) < N^{-1/2+\varepsilon}) + O(1)$$

$$\leq N \cdot \sup_{k} \mathbb{P}(W_{k/N} \in X + B_{0}(N^{-1/2+\varepsilon}))$$

$$\approx N \cdot (N^{-1/2+\varepsilon})^{\operatorname{codim} X},$$

This goes to zero when codim X > 2.

UNIVERSITÉ DU LUXEMBOURG

We avoid bad singularities

Theorem (P.-Stecconi). _____

In *F*, Brownian motion avoids "trails" of codimension c > 2 and submanifolds of codimension $c \ge 2$.

Proof.

Trails are regular enough to make the finite-dimensional proof work, and irregular enough for our purposes. For submanifolds, the proof is subtle, but follows from finite-dimensional results.

Theorem (P.-Stecconi). _

Under (**H**), Δ_{residual} decomposes as a submanifold of codimension 2 and a trail of codimension 3.

We oscillate around Morse singularities

Theorem (P.-Stecconi).

Suppose we hit Δ_{Morse} at time *t*.

Locally, there is a nice, somewhat explicit semimartingale $s\mapsto A_s$ such that

- A₀ = 0, and A_s = 0 if and only if \mathcal{Z}_{t+s} has a Morse singularity;
- A_s > 0 if and only if Z_{t+s} is resolved in one way;
- A_s < 0 if and only if \mathcal{Z}_{t+s} is resolved in a second way.

We oscillate around Morse singularities

Theorem (P.-Stecconi).

Locally, there is a semimartingale $s \mapsto A_s$ that drives the singularities of \mathcal{Z}_t .

We oscillate around Morse singularities

Theorem (P.-Stecconi).

Locally, there is a semimartingale $s \mapsto A_s$ that drives the singularities of \mathcal{Z}_t .

Corollary. _

The set of exceptional times in [0, 1] is either empty, or a Cantor set of Hausdorff dimension 1/2.

A blueprint for the study of \mathcal{Z}_t

Philosophy: if we want to understand Z_t through some invariants (volume, number of connected components, total curvature, Euler characteristic, diameter...), we only need to understand how it behaves under continuous deformation and Morse surgery.

Theorem (P.-Stecconi).

Under (**H**), the volume of the nodal set is $(1/4 - \varepsilon)$ -Hölder if it has dimension at least one.

III. More topological features, more randomness!

P. Perruchaud

Introduction 25/29

Extensions

Nig

Other topological objects

UNIVERSITÉ DU LUXEMBOURG

Extensions

Other types of randomness

Under (**H**), all these processes avoid objects of codimension 2:

- Coordinate-wise Fractional Brownian motion with H > 1/2
- Coordinate-wise Rosenblatt process*
- Solution to the heat equation with random enough initial condition

Under (**H**), all these processes avoid objects of codimension 3 and submanifolds of codimension 2:

- Solutions to $dX_t = b(X_t)dt + dW_t$ for b of finite rank
- Coordinate-wise stochastic integrals $t \mapsto \int_0^t h_s dW_s^*$
- Ornstein–Uhlenbeck processes*

* 98% confidence but no full proof

Conclusion

How to prove that for a process $t \mapsto f_t$, some geometric object $t \mapsto \mathcal{Z}_t$ is topologically nice except for sparse times where it is topologically not too bad:

- Define the space $\Delta = \Delta_{Morse} \cup \Delta_{residual}$ of f that are not nice, decomposed into "not too bad" and "actually bad"
- Show that Δ_{Morse} is a hypersurface
- ► Show that Δ_{residual} decomposes into a submanifold of codimension 2, and an object of codimension 3
- Prove a structure result on the set of times where $t \mapsto f_t$ hits hypersurfaces
- Prove that $t \mapsto f_t$ does not hit submanifolds of codimension 2 nor objects of codimension 3

Conclusion

How to prove that for a process $t \mapsto f_t$, some geometric object $t \mapsto \mathcal{Z}_t$ is topologically nice except for sparse times where it is topologically not too bad:

- Define the space $\Delta = \Delta_{Morse} \cup \Delta_{residual}$ of f that are not nice, decomposed into "not too bad" and "actually bad"
- Show that Δ_{Morse} is a hypersurface
- ► Show that Δ_{residual} decomposes into a submanifold of codimension 2, and an object of codimension 3
- Prove a structure result on the set of times where $t \mapsto f_t$ hits hypersurfaces
- Prove that $t \mapsto f_t$ does not hit submanifolds of codimension 2 nor objects of codimension 3

Thank you for your attention.

