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Brownian nodal submanifolds

Main object: random smooth functions f; that vary with
respect to some time parameter t.
Main question: how does the zero set Z; evolve?

Example: x — fi(x) € R smooth on the sphere for t fixed,
all the t — f;(x) jointly Brownian.
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Brownian nodal submanifolds

Fort > O fixed, what can we say about the zero set Z;?

Half-theorem.
In most situations Z; is a collection of disjoint smooth loops.

In other words,
vVt > 0,P(Z; is a submanifold) = 1.
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Brownian nodal submanifolds

Fort > O fixed, what can we say about the zero set Z;?

Half-theorem.
In most situations Z; is a collection of disjoint smooth loops.

In other words,
vVt > 0,P(Z; is a submanifold) = 1.

When t > o varies, is it the same?
By Fubini,
P({t > 0: Z; is a submanifold} has zero measure) = 1.

But do we actually have exceptional times?
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Brownian nodal submanifolds

Under reasonable hypotheses, we must have exceptional
times where the topology changes.

- -

From fs > o to f; < O, we must create
a point in Z; somewhere

At (some of) those times, Z; will not be a submanifold.
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Brownian nodal submanifolds

We say that f; is nice if it does not have a critical zero: there is
no point x with f(x) = 0 and dfy = o.

If f; IS nice, then Z; is a collection of disjoint smooth loops.
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Brownian nodal submanifolds

We say that f; is nice if it does not have a critical zero: there is
no point x with f(x) = 0 and dfy = o.

If f; IS nice, then Z; is a collection of disjoint smooth loops.
Moreover, fs is nice for s ~ t and we can deform Z; into Z.

By the above reasoning, there must exist exceptional times
t > o where f; is not nice.

Question.

What can we say about Z; for s ~ t when f; is not nice?
Can we say anything about the set of exceptional times?
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Brownian nodal submanifolds

Let M be a closed manifold, E — M a vector bundle, F a Banach
space of smooth sections, t — f; a Brownian motion of full
support with values in F.

Example: Brownian functions S* — R written as

k
L(X.Y.2) =Y Y W) xkxyRy Zhz
n>0  Rx+Ry+R;=n

for W(®) independent standard Brownian motions and
(Cn)n>o decreasing fast enough.
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Brownian nodal submanifolds

Let M be a closed manifold, E — M a vector bundle, F a Banach
space of smooth sections, t — f; a Brownian motion of full
support with values in F.

Example: Brownian functions S* — R written as

k
L(X.Y.2) =Y Y W) xkxyRy Zhz
n>0  Rx+Ry+R;=n

for W(®) independent standard Brownian motions and
(Cn)n>o decreasing fast enough.

Under reasonable hypotheses,
l. we can describe Z; around the exceptional times t,
Il. we can describe the set

{t > 0:tis exceptional} C (0, ).
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l. Structure of the
discriminant set

Which singularities can we get? Which singularities do we get?
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Structure of the discriminant set

Which type of singularities can we have?
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Structure of the discriminant set

We denote by A C F the set of non-nice sections (zero is not
regular). It is the central object of our study, we call it the
discriminant set. It looks a bit like this:

oCD .O
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Structure of the discriminant set
O =D
0 o5 ’

/_/DOoo

The singularities on the hypersurface look a bit like cones,
and this is indeed what they are.
Definition.

A Morse function on M is a function with a single critical zero,
given locally by

(X17' . 7Xd) — (X17 N 7Xr7:|:|XI’-|-1‘2 + |Xr-|—2’2 - x ‘Xd|2)'
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Structure of the discriminant set

Theorem (P.-Stecconi).
Suppose that the vectors

(f1(X)7d(f1)X7HeSS(f1)X) and (f1(X)7d(f1)X>f1(y)7d(f1)y) (H)

are non-degenerate for all x,y € M. Then

A = AMorse U Aresidualv
where

» Awmorse 1S the surface of all Morse functions;
> Aeciqual 1S @ complicated object of codimension 2.
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Structure of the discriminant set

Theorem (P.-Stecconi).
Suppose that the vectors

(f’l(x)7d(f’l)X7HeSS(f’l)X) and (f’I(X)vd(f1)X7f1(y)7d(f’l)y) (H)

are non-degenerate for all x,y € M. Then

A = AMorse U Aresidualv
where

» Amorse IS the surface of all Morse functions;
> Aeciqual 1S @ complicated object of codimension 2.

Remark. Aesigual €@NNOt be completely peeled in strata of
decreasing regularity; for instance, the order of tangency of
two curves can increase to infinity, but also be infinite.

P. Perruchaud Introduction 15/29



Il. Infinite-dimensional
Brownian motion

How does t — f; interact with A?
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Infinite-dimensional Brownian motion

What seems reasonable for t — Z; from the picture:

> Aecidual 1S Never touched by Brownian motion,
l.e. the singularities are at most Morse;

» Brownian motion does touch Aporse SOMetimes,
and it oscillates between the two sides of the
hypersurface.

This corresponds to Z; oscillating between the two
resolutions of the singularity.
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Infinite-dimensional Brownian motion

What seems reasonable for t — Z; from the picture:

> Aecidual 1S Never touched by Brownian motion,
l.e. the singularities are at most Morse;

» Brownian motion does touch Aporse SOMetimes,
and it oscillates between the two sides of the
hypersurface.

This corresponds to Z; oscillating between the two
resolutions of the singularity.

Theorem (P.-Stecconi).
This is all true.
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Infinite-dimensional Brownian motion

We avoid bad singularities

Theorem.

In finite dimension, Brownian motion avoids objects of
codimension ¢ > 2.

Proof.
If Wt is in X, then W,y is about O(N~"/2) away from it.

P(W,(o 1 touches X) < P(3k, d(Wg/y,X) < N~"/29) + o(1)
< N - supP(Wp/y € X + Bo(N~V219))
!

~ N . (N—1/2—|—€)codimX

This goes to zero when codim X > 2. ]
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Infinite-dimensional Brownian motion

We avoid bad singularities

Theorem (P.-Stecconi).

In F, Brownian motion avoids “trails” of codimension ¢ > 2
and submanifolds of codimension ¢ > 2.

Proof.

Trails are regular enough to make the finite-dimensional proof
work, and irregular enough for our purposes.

For submanifolds, the proof is subtle, but follows from
finite-dimensional results. ]

Theorem (P.-Stecconi).

Under (H), A esiqual decomposes as a submanifold of
codimension 2 and a trail of codimension 3.
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Infinite-dimensional Brownian motion

We oscillate around Morse singularities

Theorem (P.-Stecconi).
Suppose we hit Aporse at time t.

Locally, there is a nice, somewhat explicit semimartingale
s — As such that

» A, = 0,and As; = o if and only if Z;,s has a Morse
singularity;

» As > oifand only if Z;, s Is resolved in one way;
» As < oifand only if Z. s is resolved in a second way.
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Infinite-dimensional Brownian motion

We oscillate around Morse singularities

Theorem (P.-Stecconi).
Locally, there is a semimartingale s — As that drives the
singularities of Z;.
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Infinite-dimensional Brownian motion

We oscillate around Morse singularities

Theorem (P.-Stecconi).

Locally, there is a semimartingale s — As that drives the
singularities of Z;.

Corollary.

The set of exceptional times in [0, 1] Is either empty, or a
Cantor set of Hausdorff dimension 1/2.
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Infinite-dimensional Brownian motion

A blueprint for the study of Z;

Philosophy: if we want to understand Z; through some
invariants (volume, number of connected components, total
curvature, Euler characteristic, diameter...), we only need to
understand how it behaves under continuous deformation

and Morse surgery,.

Theorem (P.-Stecconi).

Under (H), the volume of the nodal set is (1/4 — ¢)-Holder if it
has dimension at least one.
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l1l. More topological features,
more randomness!




Extensions
Other topological objects
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Extensions

Other types of randomness

Under (H), all these processes avoid objects of codimension 2:
» Coordinate-wise Fractional Brownian motion with H > 1/2
» Coordinate-wise Rosenblatt process*

» Solution to the heat equation with
random enough initial condition

Under (H), all these processes avoid objects of codimension 3
and submanifolds of codimension 2:

» Solutions to dX; = b(X;)dt + dW; for b of finite rank

» Coordinate-wise stochastic integrals t — fcf hsdWs*
» Ornstein-Uhlenbeck processes*

*98% confidence but no full proof
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Conclusion

How to prove that for a process t — f;, some geometric object
t — Z: Is topologically nice except for sparse times where it Is
topologically not too bad:

» Define the space A = Amorse U Ayasiquat Of f that are not
nice, decomposed into “not too bad” and “actually bad”

» Show that Amorse IS @ hypersurface

» Show that A,.iqua decomposes into a submanifold of
codimension 2, and an object of codimension 3

» Prove a structure result on the set of times where t — f;
hits hypersurfaces

» Prove thatt — f; does not hit submanifolds of
codimension 2 nor objects of codimension 3
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Conclusion

How to prove that for a process t — f;, some geometric object
t — Z: Is topologically nice except for sparse times where it Is
topologically not too bad:

» Define the space A = Amorse U Ayasiquat Of f that are not
nice, decomposed into “not too bad” and “actually bad”

» Show that Amorse IS @ hypersurface

» Show that A,.iqua decomposes into a submanifold of
codimension 2, and an object of codimension 3

» Prove a structure result on the set of times where t — f;
hits hypersurfaces

» Prove thatt — f; does not hit submanifolds of
codimension 2 nor objects of codimension 3

Thank you for your attention.
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